Innovative Traits and New Technologies for Forage Plants

A Noble Approach

Mike Trammell, Plant Breeder
Talk Outline

- At a Glance – The History of the Noble Foundation.
- Noble Foundation Divisions.
- The ‘breeding pipeline’.
- Innovative traits and new technologies for forage plants.
 a. recent cultivar releases.
 b. current breeding projects.
 c. FORAGE365. A Noble approach to research, development and delivering outcomes.
- Conclusion
History and mission of the Noble Foundation
Lloyd Noble
founder of the Samuel Roberts Noble Foundation.
Ardmore, OK
Lloyd Noble establishes the Samuel Roberts Noble Foundation in 1945.
Is the largest private foundation in Oklahoma and is in the top 44 in the United States (based on asset size).

Employs more than 350 individuals, including more than 90 Ph.D. scientists, agricultural consultants and research associates.

Houses 21 primary research laboratories focused on plant research.

500,000-square-foot central campus having research, program, infrastructure and administrative space.

Operates more than 12,000 acres of farms in southern Oklahoma for research and demonstration projects.
The purpose of the Samuel Roberts Noble Foundation is to advance agricultural science and practice by conducting field and laboratory research and providing consultation to farmers, ranchers and land managers in the southern Great Plains.
“No civilization has outlived the usefulness of its soils. When the soil is destroyed, the nation is gone.”

Lloyd Noble
(1896–1950)
Oilman, philanthropist

#WorldSoilDay
Noble Foundation Divisions
Noble Foundation consultants work with farmers, ranchers and land stewards to improve their operational profitability and personal quality of life.
The plant biology division conducts basic biochemical, genetic and genomic plant research for the purpose of improving crop productivity and value.
The forage improvement division translates basic plant science research into tangible plant varieties.
Current Forage Production System

The graph illustrates the productivity of two types of forage: Winter Annual and Warm-Season Perennial. The graph shows productivity levels over the months from January to December.
Oklahoma Pastures

Summer

Winter
Beef cattle is the #1 most valuable agricultural commodity in Oklahoma.
Winter feeding costs account for as much as 60% of total yearly cow maintenance cost.
Innovative Traits and New Technologies

Recent cultivar releases and current breeding projects
New Small Grains Releases Commercialized by Oklahoma Genetics, Inc.

- NF402 oat
- NF101 wheat
- Maton II rye
- NF201 triticale
Seasonal yield of NF 101 forage wheat compared to other wheat cultivars in southern Oklahoma. Yields are averaged across seven years (2004-11) and two locations (Ardmore and Burneyville, OK).
Seasonal yield of Maton II forage rye compared to other rye cultivars in southern Oklahoma. Yields are averaged across seven years (2004-11) and two locations (Ardmore and Burneyville, OK).
Seasonal yield of NF 201 forage triticale compared to other triticale cultivars in southern Oklahoma. Yields are averaged across seven years (2004-11) and two locations (Ardmore and Burneyville, OK).
Percent NDF and IVDMD of crabgrass plots harvested during the summer of 2014. Data is the average across two sites (Ardmore, OK and Vashti, TX) and two cuttings.
New Tall Wheatgrass Cultivar Release
NFTW 6020

Improved fall yield

November 2008
Rainfall across OK

Summer dormant tall fescue

Summer active tall fescue

inches

<20

>56

Rainfall in mm:

500

1460
Summer dormant tall fescue

Endophyte free tall fescue.
New Tall Fescue Cultivar Release
NF97TF1

– a continental type tall fescue with broad adaptation and higher overall crude protein content than Texoma MaxQ II. Excellent yields. Could be commercialized immediately.
Texoma MaxQ II Tall Fescue

Continental tall fescue release from Noble Foundation

Can double animal gains and pounds of beef per acre over toxic KY-31

Non-toxic endophyte
Objectives of soft leaf tall fescue breeding program-

- Improve nutritive value, while maintaining persistence and forage yield.

- We chose to evaluate the nutritive value, yield and persistence of hybrids between persistent cultivars and soft leaf germplasm.

Traditionally, forage grasses have been defined by two traits: yield and persistence. Tall fescue has lower forage nutritive value than ideal for many livestock enterprises.
A good example of selection after 24 hrs. of grazing

Soft Leaf Advantages
- Palatable
- Increased Intake
- Late Heading
- Higher ADG
- Increased Milk Production

Ardmore, OK 2012
Development of hybrids-

- Texoma MaxQ II hybridized with various soft leaf tall fescue populations (Texoma MaxQ II x soft leaf tall fescue).
- A total of 10 soft leaf populations were developed and are currently under evaluation.
Figure 1. Seasonal forage yield and day of heading of tall fescue soft leaf hybrid populations and Texoma MaxQ II during the fall and summer 2014 growing season. Fall harvest LSD (0.05) = 797 kg ha\(^{-1}\). Spring harvest LSD (0.05) = 656 kg ha\(^{-1}\).
Figure 2. Seasonal crude protein content and day of heading of tall fescue soft leaf hybrid populations and Texoma MaxQ II during the fall and summer 2014 growing season. Fall harvest LSD (0.05) = 1.8 kg ha\(^{-1}\). Spring harvest LSD (0.05) = 2.7 kg ha\(^{-1}\).
Figure 3. Percent NDF and NDFd of tall fescue soft leaf hybrid populations and Texoma MaxQ II during the summer 2014 growing season.
Reliable phenotyping for softness

Which one is softer?
Reliable phenotyping for softness – leaf morphology

Soft leaf Continental tall fescue Continental tall fescue
Phenotyping softness is very difficult.

Soluble solids in leaves could be an indicator of softness which can be measured through Degree Brix.

Measuring Degree Brix

- One degree Brix is 1 g of sucrose in 100 g of solution.
- Measures the concentration of sugar from 0 to 32-Percent Brix.
- Max resolution 0.2-Percent Brix.
- Automatic temperature compensation.
- Only requires 2 or 3 drops of solution.
- Simple, repeatable measurements.

Portable Automatic Temp. Compensation Sucrose Refractometer
- Collected soft leaf tall fescue germplasm mainly from Europe
- Crosses were made between Texoma and soft leaf genotypes

Distinct Brix reading between Continental and soft leaf Continental
Grazing preference – sensor technology
A Noble approach to research, development and delivering outcomes

FORAGE365
Clusters

Plant growth and development
Clusters

Plant-microbe interaction
Clusters
Low-input agriculture
Clusters
Breeders toolbox
Defining and solving gaps and grand challenges

Outcomes for:
- Producers
- Consumers
- Society
- Environment

Collaborators
- Low-input agriculture cluster
- Plant-animal interaction cluster
- Plant growth/development cluster
- Breeder’s Toolbox cluster
- Plant-microbe interaction cluster

Benefits to the Southern Great Plains, the United States, world agriculture.
Year-round Grazing for the Southern Great Plains

FORAGE 365

Year-round grazing for forage-based beef production is a strategic objective of the Noble Foundation. FORAGE 365 is a research initiative that focuses on advancing four pillar species to better achieve year-round grazing in the Southern Great Plains.
Current situation

For many grazing operations:

Limited grazing from late fall through early spring.

Hay is used to fill grazing voids.
Objectives

Establish sustainable year-round forage systems for the southern Great Plains.

Improve forage productivity, production profitability and soil and water quality and sustainability.
FORAGE365: Pillar Species

- Alfalfa
- Winter Wheat
- Tall Fescue
- Bermudagrass
Forage 365 System

- Bermudagrass
- Tall fescue
- Winter wheat
- Alfalfa
Alfalfa

Improvements Needed

• Persistence/drought tolerance.
• Phosphorus use efficiency.
• Cotton Root Rot control.
• Genomic resources for breeders.
• Management systems.
Winter Wheat

Improvements Needed

• Nutrient and resource acquisition.
• Phosphorus and nitrogen use efficiency.
• Management systems.
Tall Fescue

Improvements Needed

• Summer dormancy.
• Persistence/drought tolerance.
• Resource acquisition.
• Management systems.
Bermudagrass
Improvements Needed

- Nutrient acquisition.
- Nitrogen use efficiency.
- Management systems.
Benefits

More effective R&D, including greater impact on agriculture – producers, consumers, society and environment.